AIT-WATCHMAN

Applied Antineutrino Physics 2018

Morgan Askins

10 October 2018

Water Cherenkov Monitor for Antineutrinos (WATCHMAN)

Objective: Demonstrate nuclear reactor monitoring for non-proliferation purposes through antineutrino detection using a large, scalable, technology (Gd doped water).

Detector to be located at Boulby Mine

- 25 km from Hartlepool (2x 1500 MWt reactors)
- ► Deep underground (2805 m.w.e.)
- Well established scientific program (ZEPLIN, NAIAD, DRIFT, BUGS)

Conceptual detector design

~4000 HQE low background PMTs (U/Th content reduced by a factor of 10).

100 delivered and being characterized.

Custom water filtration system designed by South Coast Water based on the EGADS design.

~2.6 kB Detection Capability.

1 kton Gd+H2O fiducial volume

$$\bar{\nu}_e + p \rightarrow e^+ + n$$

Gadolinium Development

Technology is well understood.

- 1. Neutron capture measured at LLNL in water¹.
- 2. Daya Bay / Double Chooz / RENO used Gd to detector $\bar{\nu}_e$ in liquid scintillator.
- 3. EGADS demonstrated good optical properties and long term stability of Gd in water.
- 4. WATCHMAN and Super-Kamiokande will use Gd doped water.

Measurement of reconstructed (n,Gd) in Super-Kamiokande. [Watanabe et al., 2009]

¹[Dazeley et al., 2009]

Gadolinium Loading

- ► Goal is to load 0.1% Gd into the water.
- This technology was developed for Super-Kamiokande and thoroughly tested in EGADS.
- ➤ The water retains its optical properties while becoming an efficient neutron detector
- ➤ Target loading will provide 90% capture on Gd.

Prominent background components

Produced at https://geoneutrinos.org/ with one reactor core turned off [Barna and Dye, 2015].

High-rate Single Events (Random Coincidence)

- ► Bi²¹⁴ + Tl²⁰⁸ from detector components (Water, PMTs, Steel structure, ...)
- Radon contamination

Irreducible / Coincidence

- ▶ Reactor $\bar{\nu}_e$ from other reactor.
- ightharpoonup Terrestrial $\bar{\nu}_e$
- Cosmogenic radionuclides
- Cosmogenic neutrons

WATCHMAN analysis goals

- 1. Perform the experiment with full knowledge of both reactors' ON/OFF status (unblinded).
- 2. Perform the experiment with knowledge of a single reactor as a background, with a remaining unknown reactor.
- 3. Perform the experiment with no knowledge of either reactor (fully blinded).

Dwell time

Advanced Instrumentation Testbed

AIT—Encompassing WATCHMAN and future upgrades

Detector designed to operate beyond WATCHMAN with potential future upgrades.

- 1. Water-based liquid scintillator.
- 2. Fast photo-sensors
- 3. Internal deployment

Project Timeline

The AIT-WATCHMAN collaboration

Conclusions

- 1. The WATCHMAN design is being finalized with construction to commence shortly thereafter.
- 2. First large scale antineutrino detector designed to monitor nuclear reactors for non-proliferation purposes.
- 3. AIT will extend the use of the WATCHMAN detector beyond reactor monitoring.
- 4. Collaboration is rapidly growing.

Questions?

References

- Barna, A. and Dye, S. (2015).
 Web application for modeling global antineutrinos. arXiv:1510.05633.
- Dazeley, S., Bernstein, A., Bowden, N. S., and Svoboda, R. (2009).

 Observation of Neutrons with a Gadolinium Doped Water Cerenkov Detector.

 Nucl. Instrum. Meth., A607:616–619.
- Mei, D.-M. and Hime, A. (2006).

 Muon-induced background study for underground laboratories.

 Phys. Rev. D, 73:053004.
- Watanabe, H. et al. (2009).

 First Study of Neutron Tagging with a Water Cherenkov Detector.

 Astropart. Phys., 31:320–328.